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Abstract

Compressive imaging aims to recover a latent image from under-sampled measurements, suffering from a serious ill-posed inverse
problem. Recently, deep neural networks have been applied to this problem with superior results, owing to the learned advanced
image priors. These approaches, however, require training separate models for different imaging modalities and sampling ratios,
leading to overfitting to specific settings. In this paper, a dynamic proximal unrolling network (dubbed DPUNet) was proposed,
which can handle a variety of measurement matrices via one single model without retraining. Specifically, DPUNet can exploit both
the embedded observation model via gradient descent and imposed image priors by learned dynamic proximal operators, achieving
joint reconstruction. A key component of DPUNet is a dynamic proximal mapping module, whose parameters can be dynamically
adjusted at the inference stage and make it adapt to different imaging settings. Moreover, in order to eliminate the image blocking
artifacts, an enhanced version DPUNet+ is developed, which integrates a dynamic deblocking module and reconstructs jointly with
DPUNet to further improve the performance. Experimental results demonstrate that the proposed method can effectively handle
multiple compressive imaging modalities under varying sampling ratios and noise levels via only one trained model, and outperform
the state-of-the-art approaches. Our code is available at https://github.com/Yixiao-Yang/DPUNet-PyTorch.
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1. Introduction

Compressive imaging depicts a novel imaging paradigm for
image acquisition and reconstruction that allows the recovery
of an underlying image from far fewer measurements than the
Nyquist sampling rate [1, 2, 3, 4], and drives a range of practical
applications, such as image or video compressive sensing (CS)
[2, 5], compressive sensing magnetic resonance imaging (CS-
MRI) [6, 7], single-pixel imaging [3, 8], snapshot compressive
imaging [9, 10], and compressive phase retrieval (CPR) [11,
12].

Mathematically, given the under-sampled measurements y ∈
Rm and observation model Φ(·), the goal of compressive imag-
ing is to find a solution x̂ ∈ Rn, such that y ≈ Φ(x̂) and x̂ resides
the class of images. Since the sampling ratio, defined as m

n , is
typically much less than one, reconstructing a unique solution
from limited measurements only is difficult or impossible with-
out proper image priors.

To tackle the fundamental ill-posedness of compressive imag-
ing, traditional methods typically exploit the measurement model
knowledge and intrinsic image properties [13, 14, 15, 16, 17],
and solve a regularized optimization problem in an iterative
scheme [18, 19, 20, 21, 22, 23]. They are effective and flex-
ible to handle a wide variety of measurements based on the
well-studied forward model and well-understood behavior but
limited in unsatisfactory reconstruction quality and high com-
putational complexity.
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Ground Truth Initialization Reconstruction

BCS (10×
compression)

PSNR 25.47 dB 30.13 dB

CS-MRI (5×
compression)

PSNR 25.86 dB 33.16 dB

CPR (2×
compression)

PSNR 9.81 dB 35.36 dB

Figure 1: The single trained model of our network is used to handle multiple
compressive imaging modalities with different sampling ratios: block-based
compressive sensing (BCS) with 10× compression, CS-MRI with 5× com-
pression, and CPR with 2× compression. Note that even though these inverse
problems are very different, the proposed network can handle multiple imaging
modalities under various imaging conditions via only one trained model with-
out retraining.

In contrast to iterative-based methods, deep-learning-based
compressive imaging approaches [24, 25, 26, 27, 28, 29, 30], as
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an alternative, employ neural networks to directly learn a map-
ping from measurements to latent quantities entirely based upon
data. Once trained, the inference only requires a single forward
of the network, without the need for time-consuming optimiza-
tion and hyper-parameters selection. Nevertheless, the pure
deep learning approach cannot offer the flexibility of variational
methods in adapting to different imaging modalities and even
sampling ratios, largely due to learning a task-specific map-
ping. Traditionally one would require a separate deep network
for each imaging setting even if there is only a tiny change,
which limits its practical applications.

Motivated by the observation that many iterative optimiza-
tion algorithms can be truncated and unfolded into learnable
deep neural networks, researchers have explored the hybrid ap-
proach (i.e., deep unrolling) that combines the best of both worlds
in compressive imaging [31, 32, 33, 34, 35, 36]. Following the
unrolling, regularizers, free hyper-parameters such as the step
size or regularization parameters, and even sampling matrices
can be learned via end-to-end training, rather than being hand-
crafted. Meanwhile, the physical measurement model can be
explicitly exploited. In this way, deep unrolling networks take
the merits of interpretability and flexibility of optimization-based
methods and fast inference of deep-learning-based approaches,
while achieving promising reconstruction performance.

Despite these gains, the existing deep unrolling networks
still suffer from severe performance degradation when operat-
ing on a measurement model significantly different from the
training set. An illustrative example of a state-of-the-art CS
network, i.e., ISTA-Net+, is shown in Figure 2. It can be seen
that the model of ISTA-Net+ trained on a fixed sampling ratio
(“fixed”) produces poor results when testing on unseen sam-
pling ratios. While the performance can be improved when
training on all sampling ratios jointly (“all”), there is still a large
gap between such model and the task-specific model separately
trained on each sampling ratio (“optimal”).

Basically, the ill-posedness of compressive imaging and the
difficulty of learning to solve the corresponding inverse prob-
lem are very distinct under different imaging conditions. Fur-
thermore, learned parameters of a specific unrolling network re-
main fixed after training, so the inference cannot adapt dynam-
ically to other imaging parameter configurations. To address
this issue, in this paper, a novel deep unrolling architecture was
proposed, whose key part is a dynamic proximal mapping mod-
ule. Specifically, this module consists of a convolutional neu-
ral network (CNN) that learns/executes proximal operators and
several fully connected networks that perform dynamic mod-
ification mechanisms to adjust the parameters of CNN given
imaging conditions, which can be jointly trained end-to-end. In
this way, fully connected networks will dynamically adjust the
learned proximal operators at the inference stage and make the
unrolling network adapt to different imaging settings.

The effectiveness of the proposed method is verified on three
representative compressive imaging applications, i.e., image com-
pressive sensing, CS-MRI, and CPR under various imaging con-
ditions. Furthermore, the applicability of the proposed frame-
work is explored on multiple imaging modalities with different
imaging conditions. Experimental results demonstrate that the

Figure 2: The model generalizability test of a representative deep unrolling
method – ISTANet [34] for image compressive sensing under multiple sampling
ratios. “ISTANet-optimal” denotes the (three) models trained and tested on con-
sistent sampling ratios. “ISTANet-fixed” indicates the single model trained on
the fixed sampling ratio 10% and then tested on all sampling ratios. “ISTANet-
all” implies the single model trained and tested on all sampling ratios (i.e., 10%,
25%, and 40%).

proposed method can not only effectively tackle varying imag-
ing conditions for a specific compressive imaging task, but also
be able to handle multiple imaging modalities via only one sin-
gle model simultaneously (see Figure 1), and outperform the
state-of-the-art approaches.

Our main contributions can be summarized as follows:

• We present a dynamic proximal unrolling network (dubbed
DPUNet) that can adaptively handle different imaging
conditions, and even multiple compressive imaging modal-
ities via the only one trained model.

• The key part of DPUNet is to develop a dynamic prox-
imal mapping module, which can enable the on-the-fly
parameter adjustment at the inference stage and boost the
generalizability of deep unrolling networks.

• To remove the blocking artifacts, an enhanced version
DPUNet+ is developed, which integrates a dynamic de-
blocking module and reconstructs jointly with DPUNet
to further improve the recovered images.

• Experimental results demonstrate DPUNet can outper-
form the state-of-the-art on image compressive sensing,
CS-MRI, and CPR under various imaging conditions with-
out retraining. In addition, we show the extension of
DPUNet can simultaneously handle all these imaging tasks
via one single trained model, with promising results.

The remainder of this paper is organized as follows. We
review the related works in Section 2. In Section 3, the de-
tails of the proposed method including unrolling frameworks
and dynamic proximal mapping module are presented. Section
4 provides both experimental settings and qualitative results. In
Section 5, we conclude the paper.

2



2. Related Work

2.1. CS Reconstruction Approaches
Traditionally, the inverse problem of compressive imaging

can be attacked by variational optimization methods by mini-
mizing the following cost functional:

minimize
x

1
2
||y − Φ(x)||22 + λR (x) , (1)

by an iterative optimization framework, e.g., the proximal gra-
dient descent (PGD) [18], the alternating direction method of
multipliers (ADMM) [22], the iterative shrinkage-thresholding
algorithm (ISTA) [20], and the half-quadratic splitting (HQS)
[21] algorithm. In the above, R (x) indicates the regularization
term associated with the prior knowledge of images, which al-
leviates the ill-posedness of compressive imaging. Many im-
age priors have been designed in the imaging community over
the past decades. The well-known examples include structured
sparsity [37, 38, 39, 40], group sparse representation (GSR)
[15] and nonlocal low-rank [14, 41, 42].

In contrast to handcrafted priors, deep-learning-based com-
pressive imaging approaches have been proposed and demon-
strate promising reconstruction results with fast inference speed.
A stacked denoising auto-encode (SDA) is first applied to learn
statistical dependencies from data, improving signal recovery
performance [43]. Fully connected neural networks are pro-
posed for image and video block-based compressive sensing
(BCS) reconstruction [44, 45]. Further several CNN-based ap-
proaches are developed, which learn the inverse map from com-
pressively sensed measurements to reconstructed images [46,
27]. Recently, some works jointly optimize a sampling sub-
network and a reconstruction sub-network to further enhance
the performance. CSNet [28] develops a sampling-recovery
framework and BCSNet [30] avoids blocking artifacts by uti-
lizing interblock correlation. SCSNet [29] presents a hierar-
chical CNN for fine-granular scalable sampling and reconstruc-
tion. The basic idea of these works is designing a neural net-
work fNN(y,Θ) to directly perform the inverse mapping from
observed measurements y to desired images x by learning net-
work parameters Θ based upon the training dataset Γ:

Θ̂ = argmin
Θ

1
|Γ|

∑
(y,x)∈Γ

L(x, fNN(y,Θ)), (2)

whereL is a loss function. However, most of the network archi-
tectures are predefined and fixed for specific problems, which
usually cannot adapt to others. While achieving adaptive sam-
pling and reconstruction with one trained model, SCSNet also
requires to update the greedy searching strategy for different
sampling ratios. In addition, designing neural networks could
be often considered as much an art as a science, without clear
theoretical guidelines and domain knowledge [47].

Inspired by the interpretability and flexibility of traditional
approaches, an emerging technique called deep unrolling or un-
folding has been applied to compressive imaging [31, 32, 33,
34]. By unrolling the iterative optimization framework and in-
troducing learnable parameters Θ, deep unrolling networks can

be learned by minimizing the following empirical risk:

Θ̂ = argmin
Θ

1
|Γ|

∑
(y,x)∈Γ

L(x, fNN(y,Φ,Θ)), (3)

whereΦ is the given physical measurement model. Preliminary
attempts focused on learning fast approximation of specialized
iterative solvers attached to well-designed priors. The compu-
tation schemes of the resulting networks are concise with the
original solvers, but with fixed numbers of iterations and some
untied/unshared parameters across layers. Well-known exam-
ples include learned shrinkage-thresholding algorithms (LISTA)
[31] and learned approximate message passing (LAMP) algo-
rithms [32]. A similar idea has also been applied to the al-
ternating direction method of multipliers (ADMM) solver for
CS-MRI [48], but with the goal to design powerful networks
(ADMM-Net) rather than approximating variational methods.
In contrast with encoding the sparsity on linear transform do-
main to network [48], ISTA-Net [34] goes beyond that to non-
linear transform domain sparsity. Moreover, OPINE-Net [36]
considers the joint sampling and reconstruction of image CS
that can be further released into purely data-driven prior to boost
the performance. Nevertheless, few works consider the per-
formance degradation of deep unrolling networks under mis-
matched imaging settings during inference, owing to the fixed
network parameters.

Another approach that can combine the benefits of both
deep learning and optimization methods is called plug-and-play
(PnP) priors [49]. Its core idea is to plug a denoiser into the
iterative optimization such that the image prior is implicitly de-
fined by the denoiser itself. Many deep-learning-based denois-
ers have been utilized in the PnP framework to resolve compres-
sive imaging problems, without the need for task-specific train-
ing [50, 51, 52, 53, 54, 55]. The main strength of PnP over deep
unrolling is the generalizability (only one network is required
to handle various compressive imaging problems [50]), but its
performance often lags behind the deep unrolling network due
to the lack of end-to-end training [56]. Meanwhile, it also faces
the limitations of high computational complexity and difficul-
ties of tuning parameters [53, 57]. In this work, we propose a
dynamic proximal unrolling approach that improves the gener-
alizability of deep unrolling considerably, while still enjoying
the joint optimization of parameters via end-to-end learning.

2.2. Dynamic Neural Networks
Another line of related work is dynamic neural networks,

which can dynamically adjust their structures or parameters for
different inputs during inference, improving the accuracy, com-
putational efficiency, and adaptiveness of neural networks [58].
Conditionally parameterized convolution (CondConv) [59] and
dynamic convolutional neural network (DY-CNN) [60] intro-
duce the soft attention on convolutional weights and improve
the representation power on both classification and detection
tasks. Dynamic filter networks [61] and HyperNetworks [62]
adopt another network to produce dynamic filters and weights
for CNNs and RNNs, respectively. Several recent works ex-
plore the employ of additional modules to adjust controlling
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input for image restoration [63, 64, 65]. Compared with the ex-
isting works, we declare three main contributions of our work:
first one is that we introduce the insight of dynamic neural net-
work into deep unrolling scheme and present a dynamic prox-
imal unrolling network. Secondly, we investigate and demon-
strate that dynamic instance normalization layer is more pow-
erful than dynamic convolution layer. Thirdly, we focus on
compressive imaging problems which are more demanding for
dynamic neural networks, and apply the proposed DPUNet to
handle multiple imaging modalities with varying imaging con-
ditions.

3. Method

In this section, we first introduce the iterative proximal op-
timization algorithm and the corresponding deep unrolling net-
work. Then, we describe the dynamic proximal mapping mod-
ule – a core component of the proposed dynamic proximal un-
rolling network. An overview of the proposed network is shown
in Figure 3. What’s more, we present the applicability of the
proposed method to other optimization frameworks. To elimi-
nate the blocking artifacts, we further design an enhanced de-
blocking verision DPUNet+.

3.1. Proximal optimization and deep unrolling

In this paper, we adopt the proximal gradient descent (PGD)
algorithm [18] for solving Eq.(1), which provides a general and
efficient scheme to split the data-fidelity term and regulariza-
tion term by alternating between the gradient descent step and
proximal mapping step. Starting from the initial point x0, the
whole iterations’ process of PGD can be written as

zk = xk−1 − rk−1∇D (xk−1) , (4)
xk = ProxλR (zk) , (5)

where k denotes the iteration index,D (x) = 1
2 ||y−Φ(x)||22 is the

data-fidelity term, ∇ denotes the vector differential operator that
calculates the gradient of a given function, and rk is the step-
size of the k-th iteration. Eq.(4) can be understood as one-step
gradient descent for dealing with the data-fidelity term. And
ProxλR(z) := argminx

{
R(x) + 1

2λ∥x − z∥22
}

denotes the proximal
operator for handling the regularization term [19, 20] in Eq.(5).

Given the modular nature of the proximal optimization frame-
work, the overall iterative procedure can be truncated and un-
rolled into a trainable reconstruction network by replacing all
instances of the proximal operator ProxλR(·) with a trainable
deep convolutional neural network (CNN). The CNN is ex-
pected to learn/perform the proximal operator in Eq.(5), which
can project the corrupted image into the clean image manifold.
In this paper, we design a simple yet effective CNN consisting
of five convolution (Conv) layers separated by an instance nor-
malization (IN) layer [66] and a rectified linear unit (ReLU).
IN was first proposed in style transfer and has shown signif-
icant improvement by normalizing feature statistics [66]. To

stabilize training [67], an identity skip connection is built be-
tween the input and output of the CNN. Mathematically, in the
k-th iteration, the CNN maps zk to xk through

f0 = zk,

f j = ReLU(IN j(W j ∗ f j−1)), j = 1, 2, 3, 4,

xk = W5 ∗ f4 + f0,

where W j represents the filters of convolution with a certain
kernel and stride size, ∗ denotes the convolution operation, and
the IN j represents the j-th instance normalization operation as

IN j(x) = γ j(
x − u(x)
σ(x)

+ β j),

where γ j and β j are affine parameters learned from data; u(x)
and σ(x) are the mean and standard deviation of the input x,
computed across spatial dimensions independently for each fea-
ture channel and each sample.

3.2. Dynamic proximal mapping module

Given the training data, the resulting network can be trained
end-to-end to learn the proximal mapping. However, the train-
able parameters (i.e., W j, γ j, β j) of the CNN are usually fixed
once trained, while different imaging conditions such as vary-
ing sampling-ratios or noise-levels all affect the performance of
the learned proximal operator. To overcome this limitation, we
make a step forward by proposing a dynamic proximal mapping
module that can dynamically adjust the parameters of CNN ac-
cording to different imaging conditions, to perform adaptively
proximal operators. To this end, we use a set of fully connected
networks, whose inputs are imaging parameters θ such as the
sampling ratio and noise level, and outputs are the parameters
(W j, γ j, β j) of CNN, shown in Figure 4. The fully connected
networks aim to generate and update the parameters of CNN,
i.e., the weights of convolution filters and affine parameters of
IN layers. During the training stage, the proximal CNN and
fully connected networks can be jointly trained. In the infer-
ence stage, given different imaging parameters, fully connected
networks will adaptively adjust the learned proximal operator
represented by the CNN, thus improving the representation ca-
pability.

Specifically, the imaging parameter is an auxiliary input that
feeds into fully connected layers with the final layer outputting
the convolution filter weights. The output then is reshaped into
a 4D tensor of convolution filter weights and convolved with the
input image. Based on empirical results in Section 4, we em-
ploy a single fully connected layer to directly learn the weights
of convolution filters, which can be written as

W j = A jθ + b j, j = 1, ..., 5, (6)

where θ ∈ Rl is the l imaging parameters related to the imaging
settings, W j ∈ Rm j represents the weights (m j denotes the total
number of parameters) of the j-th convolution layer in CNN,
and A j ∈ Rm j×l, b j ∈ Rm j are the weight and bias of the corre-
sponding fully connected layer.
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Figure 3: Overview of the proposed dynamic proximal unrolling network. Specifically, our network is unrolled by T iterations (empirically set to 10), and each
iteration includes the gradient descent (GD) and the proposed dynamic proximal (DyProx) mapping module, which correspond to Eq. (4) and Eq. (5). The DyProx
consists of a deep convolutional neural network (CNN) and several fully connected (FC) layers. The CNN is designed as a combination of five convolutions (Conv)
layers, each of which is separated by an instance normalization (IN) layer and a ReLU non-linearity. An identity skip connection is added between the input and
output. The inputs of FC layers are imaging parameters θ such as sampling ratio and noise level, and the outputs are weights W of convolution (Conv) and affine
parameters γ, β of instance normalization (IN). At the inference stage, given the imaging parameters, FC layers will adaptively determine parameters of CNN, which
contribute to reconstructions together with gradient descent steps from given measurements.

In essence, these fully connected networks introduce a dy-
namic modulation mechanism for the weights of convolution
with imaging parameters. When the fully connected networks
contain only linear operations without non-linear activation func-
tion, the implicit assumption is that the network parameters for
proximal mapping required by different imaging conditions are
linear. Considering a special case, it is mathematically equiv-
alent to directly learn the weights of convolution without fully
connected layers when the imaging parameters θ = 0, i.e., W j =

b j, j = 1, ..., 5. When the imaging parameters are non-zero, the
fully connected networks will set up a connection between the
CNN weight space and imaging parameters.

For instance normalization layers, we employ two fully con-
nected layers separated by a ReLU (non-linearity) for the affine
parameters of IN, respectively, which can be written as

Q j = A j2ReLU(A j1θ + b j1) + b j2, j = 1, ..., 4, (7)

where Q j ∈ Rm represents the parameters γ j ∈ Rm or β j ∈ Rm

of the j-th instance normalization, A j1 ∈ Rm×l, A j2 ∈ Rm×m and
b j1 ∈ Rm, b j2 ∈ Rm are the weight and bias of the corresponding
two fully connected layers. Note that continually increasing
the fully connected layers can still improve the performance,
but with more learnable parameters and higher computational
complexity (See Section 4).

3.3. Dynamic proximal unrolling network

In essence, the structure of the proposed dynamic proxi-
mal unrolling network (dubbed DPUNet) is derived from the
truncated proximal gradient descent algorithm, combined with
a dynamic proximal mapping module.

When given training data, the inputs of the proposed DPUNet
are the measurements y, corresponding physical forward model
Φ and imaging parameters θ, which are sent to the reconstruc-
tion process and fully connected networks, respectively. So the
proposed DPUNet can be trained by minimizing the following

Figure 4: Illustration of the fully connected networks. Subfigure (a) illustrates
the fully connected layer for convolution layers. The imaging parameter θ is
an auxiliary input that feeds into a single fully-connected layer that outputs the
weights W of convolution filters. Subfigure (b) describes two fully connected
layers separated by a ReLU for instance normalization (IN) layers. The outputs
are affine parameters of IN.

empirical risk:

Θ̂ = argmin
Θ

1
|Γ|

∑
(y,x)∈Γ

L(x, fNN(y,Φ, g(θ;Θ))), (8)

where g(·;Θ) is the operation for generating the dynamic pa-
rameters via fully connected layers, and L(·, ·) is exploited by
the pixel-wise L2 loss.

Given imaging parameters, fully connected networks will
update the parameters of CNN to execute the proximal opera-
tor at each iteration. Finally, the outputs of the proposed net-
work are reconstructed images, which are used to compute loss
with the ground-truth. By back-propagation, the trainable pa-
rameters of our network, including the weight and bias of fully
connected networks and the gradient step sizes, can be jointly
optimized.

Once the model is trained, given the imaging parameters
and measurements, the fully connected networks can adaptively
generate parameters of CNN and the unrolling network per-
forms the reconstructions. In this way, we can dynamically ad-
just the learned proximal operator based on the designed fully
connected networks at the inference stage, thus enabling the
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handling of different imaging settings and continuous parame-
ter control.

3.4. Other optimization frameworks
A large variety of first-order proximal algorithms have been

developed for solving Eq.(1) efficiently [18, 22, 20, 21]. In this
paper, we present other two representative proximal optimiza-
tion frameworks (i.e., HQS and ADMM) to construct dynamic
proximal unrolling networks. It has been observed that both of
them perform well with the proposed dynamic proximal map-
ping module.

Unrolled-HQS. HQS tackles Eq.(1) by introducing an auxil-
iary variable z, leading to iteratively solving subproblems for z
and x as

zk = argmin
z

{1
2
||y − Φ(z)||22 +

µk
2 ∥z − xk−1∥

2
2
}
, (9)

xk = argmin
x

{
λR(x) + µk

2 ∥zk − x∥22
}
, (10)

where k denotes the iteration index, µk indicates the penalty
parameter.

Assuming that Φ(·) is a linear measurement model, we still
adopt the one-step gradient descent and proximal operator to
deal with Eq.(9) and Eq.(10), respectively, which can be written
as

zk = zk−1 − rk−1(ΦT (Φzk−1 − y) + µk(zk−1 − xk−1)), (11)
xk = Prox λ

µk
R (zk) , (12)

where ΦT denotes the transpose of the sampling matrix, Prox
denotes the proximal operator, and rk is step-size at k-th itera-
tion.

Once the proximal optimization is determined, the next step
is to unroll the iterative process into a dynamic proximal un-
rolling network by introducing the designed dynamic proximal
mapping module. In this way, the free hyper-parameters (i.e.,
rk, µk) of HQS and dynamic proximal mapping module can be
jointly learned via end-to-end training.

Unrolled-ADMM. Eq.(1) can also be solved by ADMM, whose
iterations can be written as

xk = ProxλR (zk−1 − uk−1) , (13)
zk = Prox 1

µk
D (xk + uk−1) , (14)

uk = uk−1 + xk − zk, (15)

where D(x) = 1
2 ||y − Φ(x)||22, µk still indicates the penalty pa-

rameter.
Similarly, we use the one-step gradient descent to tackle

Eq.(14). Unrolled-ADMM can be derived by unrolling the cor-
responding iterative optimization and replacing the proximal
operator with the designed dynamic proximal mapping module.

Based on empirical results, we demonstrate the proposed
dynamic proximal mapping module can be embedded into dif-
ferent proximal optimization frameworks, and boost the gener-
alizability of deep unrolling network. In this paper, we adopt
the proximal gradient descent framework as the final choice,
owing to its conciseness and effectiveness. More experimental
details are presented in Section 4.

Figure 5: Illustration of the proposed DPUNet+ framework, which integrates
a deblocking module with DPUNet to eliminate the blocking artifacts and im-
prove the recovered image. (Best viewed with zoom)

3.5. Enhanced Deblocking Version: DPUNet+

For block-wise CS sampling, each image block is sampled
and reconstructed independently, which will inevitably suffer
from blocking artifacts and image quality degradation. To ad-
dress this issue, we further present an enhanced deblocking
framework of DPUNet, termed DPUNet+, which is shown in
Figure 5. Specifically, we integrate a deblocking module with
DPUNet to jointly reconstruct the image. It is worth mention-
ing that the deblocking module does not perform on each image
block independently, but perform on the whole image formed
by reassembling all approximated blocks. In this way, the pro-
posed DPUNet+ can exploit the inter-block relationship to re-
move the blocking artifacts.

To this end, we adopt the same U-Net architecture [68] as
[69] and add an identity skip connection between the input and
output of the deblocking module. Considering that our single
network needs to handle different sampling ratios simultane-
ously, we apply the above dynamic mechanism to all convolu-
tions of U-Net and form a dynamic deblocking module, which
can adapt to different blocking artifacts induced by different
sampling ratios. Through end-to-end joint training, the single
model of DPUNet+ can reconstruct the images and eliminate
the blocking artifacts under various sampling ratios.

4. Experiments

In this section, we mainly focus on three representative com-
pressive imaging modalities: image compressive sensing, com-
pressive sensing magnetic resonance imaging (CS-MRI), and
compressive phase retrieval (CPR), and detail experiments to
evaluate the proposed method. We first describe the experi-
mental setting including both physical observation models and
implementation details. Then we compare our method against
prior art on different tasks under varying imaging conditions
and provide an in-depth discussion of the proposed method. Fi-
nally, we present an extension of DPUNet to simultaneously
handle all these compressive imaging modalities under various
imaging conditions via one single model.

4.1. Experimental Setting

4.1.1. Image CS
Image compressive sensing (CS) is a popular linear inverse

problem, which enables image or video capturing under a sub-
Nyquist sampling rate [2, 70]. In this paper, we focus on the
block-based compressive sensing (BCS) task to validate the pro-
posed method. Following common practice and for fair com-
parison, we use the same training data of 88,912 image blocks
(each of size 33 × 33) provided in [34, 71] for DPUNet. For
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training DPUNet+, we randomly extract the luminance com-
ponent of 80,000 image blocks (each of size 99 × 99) from
the public dataset DIV2K [72]. And we use two widely-used
benchmark datasets Set11 [27] and BSD68 [73] for testing.

Given the sampling ratio, the measurement y is generated by
y = Φx with the sampling matrix Φ, where x is the vectorized
version of an image block with a size of 33 × 33. Specifically,
we consider two types of sampling matrices, i.e., fixed random
Gaussian matrix (“fixed”) and data-driven adaptively learned
matrix (“learned”). And we adopt the data-fidelity termD(x) =
1
2 ||y − Φx||22, and compute its gradient ∇D(x) = ΦT (Φx − y).
HereΦT denotes the transpose ofΦ. For fixed sampling matrix,
we adopt the linear mapping method for initialization, same as
ISTA-Net [34]. For learned sampling matrix, we focus on the
binarized orthogonal matrix and employ an efficient convolu-
tional implementation of ΦT , same as OPINE-Net [36].

In order to verify the effectiveness of the proposed method
to handle various imaging conditions with one single model,
we consider two cases, i.e., noiseless and noisy. For noise-
less case, we simulate to generate the BCS measurement of
each patch with the sampling ratio η uniformly sampled from
{1%, 4%, 10%, 25%, 40%, 50%} in the training stage. For noisy
case, we further add Gaussian noise with the noise level α uni-
formly sampled from [0,50]. Then we take [η] for noiseless
case and [η, α] for noisy case as imaging parameters, respec-
tively.

4.1.2. CS-MRI
CS-MRI is an advanced technique for fast MRI through re-

construction of MR images from much fewer under-sampled
measurements in k-space (i.e., Fourier domain). Following com-
mon practice, we adopt the measurement matrix with the form
Φ = PF, where F represents the 2-dimensional Fourier trans-
form and P is an under-sampling matrix taken as a commonly
used pseudo radial sampling mask. We use the same training
and testing brain medical images as ISTANet [34]. Here we
still utilize the data-fidelity termD(x) = 1

2 ||y − Φx||22, and com-
pute its gradient ∇D(x) = ΦT (Φx − y). For initialization, we
project the under-sampled Fourier measurements to the image
domain via the inverse Fourier transform. For each image, we
simulate to generate subsampled measurements in Fourier do-
main with the sampling ratio η uniformly sampled from {20%,
30%, 40%, 50%} and add Gaussian noise ϵ with the noise level
α uniformly sampled from [0,50]. Similarly, we take [η, α] as
imaging parameters.

4.1.3. CPR
CPR is a representative non-linear inverse problem, con-

cerned with the recovery of an underlying image from only
the subsampled intensity of its complex transform. Mathemati-
cally, the measurements of CPR can be written as y = |Φx|2 + ϵ
with Poisson noise ϵ ∼ N(0, α2Diag(|Φx|2)), where the term
α controls the noise level in this problem [74, 51]. The data-
fidelity term adopts the amplitude loss functionD(x) = 1

2 ||
√

y−
|Φx| ||22 in [74]. Notice D(x) involves complex number opera-
tions, we therefore adopt the Wirtinger derivatives [75] to com-

pute its gradient 1, i.e., ∇D(x) = 1
2Φ

H
(
(|Φx| −

√
y) ◦ Φx

|Φx|

)
, where

◦ denotes the Hadamard (element-wise) product and ΦH de-
notes the conjugate transpose of Φ. Considering the image is
real-valued, we directly take the real part of the gradient ∇D(x)
to deal with the subtraction in Eq.(4). We test CPR methods
under simulated coded Fourier measurements, where the mea-
surement matrix with the form Φ = JFM, where J represents
a m × n matrix made from randomly sampled rows of a n × n
identity matrix and M is a diagonal matrix with nonzero ele-
ments drawn uniformly from a unit circle in the complex plane
[51]. Here we initialize x0 with a vector of ones that works
sufficiently well. To train the network, we follow the common
practice that uses 160000 overlapping patches (with a size of
64 × 64) cropped from 400 images from the BSD dataset [76].
For each patch, we simulate to generate coded Fourier measure-
ments with the sampling ratio η uniformly sampled from {30%,
40%, 50%} and add Poisson shot noise ϵ with the noise level α
uniformly sampled from [0,30], and we take [η, α] as imaging
parameters.

The inputs of our network are the measurements and corre-
sponding imaging parameters. To keep consistent magnitude of
back-propagated gradient, we normalize the maximum value of
imaging parameters to one, i.e., θ = [(100 × η)/50, α/50]. We
train all models using Adam optimizer with PyTorch on one
Nvidia GeForce GTX 3080 Ti GPU. The models of DPUNet
on BCS are trained in 200 epochs with the batch size of 64 and
learning rate 10−4. The models of DPUNet+ on BCS are trained
using the pre-trained models of DPUNet as initialization in 20
epochs with the batch size of 64 and learning rate 10−4. The
model of DPUNet on CS-MRI is trained in 200 epochs with the
batch size of 4 and learning rate 10−4. The model of DPUNet
on CPR is trained in 20 epochs with the batch size of 40 and
learning rate 10−3.

4.2. Performance Comparison
4.2.1. Validations on BCS

To verify the performance of the proposed method, we mainly
compare it against two classic CS approaches, namely TVAL3
[77] and D-AMP [78], three learning-based approaches Recon-
Net [27], CSNet [79], and SCSNet [29], and two state-of-the-
art deep unrolling approaches ISTA-Net+ [34] and OPINE-Net
[36]. Specifically, CSNet, SCSNet, and OPINE-Net focus on
data-driven learned sampling matrix to achieve very high per-
formance. For end-to-end training methods, i.e., ReconNet,
CSNet, ISTA-Net, and OPINE-Net, we re-train the correspond-
ing model for each sampling ratio setting. SCSNet also requires
to update the greedy searching strategy for different sampling
ratios. Table 1 shows the average PSNR and SSIM results of
the competing methods for noiseless BCS reconstructions on
“fixed” and “learned” sampling matrices with different sam-
pling ratios on Set11 and BSD68, respectively. It can be found
that our methods (both DPUNet and DPUNet+) can achieve
very competitive performance on various sampling ratios with

1A detailed derivation of the gradient formulation of the data-fidelity term
in CPR is provided in Appendix A.
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Table 1: Average PSNR/SSIM performance comparisons of various methods for noiseless BCS reconstructions on “fixed” and “learned” sampling matrices with
different sampling ratios on Set11 and BSD68. The best results are labeled in bold and the second are underlined.

Datasets Method Type
Sampling Ratio (PSNR/SSIM)

1% 4% 10% 25% 40% 50%

Set11

TVAL3

“fixed”

11.32/0.2896 18.39/0.4667 22.84/0.6638 27.84/0.8344 29.14/0.9055 33.37/0.9339
D-AMP 5.21/0.0074 15.52/0.3742 21.18/0.6091 28.24/0.8464 33.47/0.9262 35.79/0.9460

ReconNet 17.22/0.4032 19.77/0.5168 24.06/0.7223 25.46/0.7687 30.78/0.8932 31.48/0.8993
ISTA-Net+ 17.45/0.4131 21.56/0.6240 26.49/0.8036 32.44/0.9237 36.02/0.9579 38.07/0.9706
DPUNet 17.48/0.4261 22.21/0.6594 27.31/0.8271 32.99/0.9300 36.48/0.9609 38.35/0.9719
DPUNet+ 18.09/0.4497 22.55/0.6741 27.54/0.8359 33.25/0.9328 36.67/0.9616 38.52/0.9722

CSNet

“learned”

19.87/0.4977 23.93/0.7338 27.59/0.8575 31.70/0.9274 36.15/0.9625 37.19/0.9700
SCSNet 21.04/0.5562 25.08/0.7626 28.48/0.8616 33.43/0.9373 36.92/0.9666 39.01/0.9769

OPINE-Net 20.02/0.5362 25.04/0.7730 29.33/0.8825 34.44/0.9491 38.13/0.9719 39.88/0.9790
DPUNet 20.08/0.5201 25.22/0.7783 29.40/0.8831 34.55/0.9491 37.89/0.9706 39.71/0.9783
DPUNet+ 20.37/0.5312 25.42/0.7808 29.50/0.8848 34.61/0.9502 38.10/0.9716 39.90/0.9790

BSD68

TVAL3

“fixed”

12.84/0.3177 20.20/0.4715 23.54/0.6165 26.97/0.7734 29.60/0.8603 31.32/0.8998
D-AMP 6.47/0.0085 17.09/0.3621 21.91/0.5288 25.55/0.6894 27.93/0.7803 29.98/0.8324

ReconNet 19.00/0.4018 21.23/0.4812 23.88/0.6400 24.99/0.6600 28.96/0.8499 30.13/0.8798
ISTA-Net+ 19.18/0.4201 22.34/0.5573 25.30/0.7001 29.31/0.8507 32.16/0.9158 34.01/0.9421
DPUNet 19.18/0.4263 22.71/0.5762 25.70/0.7170 29.63/0.8588 32.53/0.9209 34.31/0.9452
DPUNet+ 19.88/0.4483 23.10/0.5921 25.93/0.7270 29.85/0.8644 32.79/0.9246 34.60/0.9483

CSNet

“learned”

21.91/0.4958 24.63/0.6564 27.02/0.7864 30.22/0.8918 32.53/0.9206 34.82/0.9590
SCSNet 21.88/0.5250 24.98/0.6843 27.13/0.7785 30.76/0.8973 33.86/0.9348 35.67/0.9640

OPINE-Net 21.80/0.4972 25.16/0.6841 27.54/0.7966 31.28/0.9034 34.35/0.9482 36.12/0.9646
DPUNet 21.96/0.5049 25.00/0.6765 27.60/0.7988 31.26/0.9022 34.13/0.9461 35.90/0.9628
DPUNet+ 22.16/0.5135 25.14/0.6819 27.68/0.8024 31.40/0.9058 34.38/0.9493 36.19/0.9653

TVAL3 D-AMP ReconNet ISTA-Net+ DPUNet DPUNet+ GroundTruth

19.20 16.45 20.56 21.48 21.89 22.25 PSNR

23.34 21.60 23.15 24.68 25.10 25.37 PSNR

25.86 24.70 25.91 28.38 28.63 28.89 PSNR

Figure 6: Reconstructed images on BSD68 dataset and corresponding PSNRs (dB) from noiseless BCS measurements on “fixed” sampling matrices with sampling
ratios (η = 4%, η = 10% and η = 25%, from top to bottom) with six image CS algorithms.

one single trained model. Moreover, benefited from data-driven
sampling matrix and the proposed dynamic deblocking mod-
ule, our DPUNet+ can produce consistently better reconstruc-
tion results. We show visual comparisons of these algorithms
on “fixed” and “learned” sampling matrices in Figure 6 and Fig-
ure 7, respectively. It can be seen that the proposed methods
produce more accurate and clearer reconstructed images than
other competing algorithms. In addition, our DPUNet+ can
eliminate the blocking artifacts and improve the quality of re-
constructed images.

Moreover, we further conduct noisy BCS experiments on
the fixed sampling matrix. Table 2 shows performance of four
methods on the public dataset Set11 under various sampling
ratios and noise levels. It can be observed that our method out-
performs other methods under all imaging conditions via one
single trained model. By contrast with ISTA-Net+, our method
avoids the cumbersome retraining requirement, which is bene-
ficial for real applications. In addition, it is worth mentioning
that our method can generalize well to an unseen sampling ratio
setting during training, as η = 30%.
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Table 2: Average PSNR (dB) performance comparisons for noisy BCS recon-
structions on Set11 under different imaging conditions (η and α denote the sam-
pling ratio and noise level, respectively). The best results are labeled in bold
and the second are underlined.

η α TVAL3 D-AMP ISTA-Net+ DPUNet

50%
10 26.83 30.63 31.42 32.00
30 19.08 25.92 26.87 27.20
50 14.88 23.56 24.30 24.79

40%
10 26.31 29.29 30.53 31.20
30 19.33 25.08 26.21 26.59
50 15.38 22.84 23.78 24.17

30%
10 25.57 27.58 29.45 30.04
30 19.47 23.93 25.28 25.70
50 15.81 22.00 22.89 23.29

10%
10 21.91 20.87 24.63 25.40
30 18.83 19.68 21.85 22.26
50 16.34 18.53 20.02 20.32

1%
10 11.26 5.20 17.25 17.27
30 10.90 5.19 16.46 16.58
50 10.55 5.18 15.44 15.79

4.2.2. Validations on CS-MRI
We mainly compare DPUNet with six competing methods

for CS-MRI, including three classic algorithms RecPF [23],
FCSA [80] and D-MRI [81], the deep unrolling network ISTA-
Net+ [34], two plug-and-play (PnP) approaches IRCNN [54]
and TFPnP [57]. We train separate models of ISTA-Net+ for
each sampling ratio in 200 epochs, and retrain TFPnP to adapt
to the size of our MR images (i.e., 256 × 256). Table 3 shows
quantitative performance comparisons on 50 brain medical im-
ages under different imaging conditions. It can be seen that
DPUNet significantly outperforms other competing algorithms
under various imaging conditions with only one trained model.
The fact that one single DPUNet model performs so well on
almost all sampling ratios, particularly in comparison to the
ISTA-Net+ models, which were trained separately per sampling
ratio, again demonstrates that DPUNet generalizes across mea-
surement matrices. What’s more, compared with the PnP ap-
proaches IRCNN and TFPnP, DPUNet enjoys higher recon-
struction performance owing to end-to-end training and faster
inference speed. In Figure 8, we show the reconstructions of
three brain MR images and corresponding PSNRs under dif-
ferent sampling ratios (η = 20%, 30%, 40%) and noise levels
(α = 10, 30, 50) with seven algorithms. It can be observed that
DPUNet can reconstruct more details and sharper edges, espe-
cially in case of severe noise.

4.2.3. Validations on CPR
We mainly compare DPUNet with two state-of-the-art ap-

proaches (BM3D-prGAMP [55] and prDeep [51]) for CPR. We
use their respective authors’ implementations and adopt the same
set of twelve images (resized to 128×128) used in [51] to quan-
titatively evaluate different CPR methods. The results of perfor-
mance comparisons for CPR are summarized in Table 4. It can
be seen that DPUNet can handle these imaging conditions with
state-of-the-art results via one single trained network. The vi-
sual comparison can be found in Figure 9. It can be found that

CSNet: 28.00 SCSNet: 28.10 OPINE-Net: 29.34

DPUNet: 29.26 DPUNet+: 29.41 Parrots: PSNR

Figure 7: Reconstructed images and corresponding PSNRs (dB) from noiseless
BCS measurements on “learned” sampling matrix with the sampling ratio (η =
10%) with five image CS algorithms.

our method can still effectively recover desired images, and pro-
duce clearer results than other competing methods. In addition,
it is worth mentioning that our method trained on a small patch
size of 64×64 can perform well on a size of 128×128, which
demonstrates the robustness of our method for different mea-
surement matrices. And it is very important for CPR because
its forward measurement matrix is related to the object size.

4.3. Discussion
4.3.1. Effects of different dynamic architectures

To give some insights of the proposed dynamic proximal
mapping module, we conduct an ablation study on different dy-
namic network architectures, including (1) PUNet: the basic
proximal unrolling network without fully connected layers; (2)
PUNet + DConv1: PUNet with dynamic convolution via one
fully connected layer; (3) PUNet + DConv2: PUNet with dy-
namic convolution via two fully connected layers; (4) PUNet
+ DIn1: PUNet with dynamic instance normalization via one
fully connected layer; (5) PUNet + DIn2: PUNet with dy-
namic instance normalization via two fully connected layers;
(6) PUNet + DIn3: PUNet with dynamic instance normaliza-
tion via three fully connected layers; (7) PUNet + DConv1In1:
PUNet with dynamic convolution and instance normalization
via one fully connected layer; (8) PUNet + DConv2In1: PUNet
with dynamic convolution via two fully connected layers and
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Table 3: Average PSNR (dB) and Run Time (s) performance comparisons for CS-MRI on 50 brain medical images under different imaging conditions (η and α
denote the sampling ratio and noise level, respectively). The best results are labeled in bold and the second-best results are underlined.

Algorithm
η = 20% η = 30% η = 40% η = 50% Time

α = 10 30 50 α = 10 30 50 α = 10 30 50 α = 10 30 50 CPU/GPU
RecPF 31.41 25.06 21.33 32.47 24.76 20.61 33.05 24.37 19.96 33.46 24.00 19.41 0.39s/-
FCSA 30.71 24.11 19.19 31.31 23.07 17.93 31.28 22.28 17.21 31.29 21.78 16.77 0.64s/-
DMRI 25.77 20.23 22.06 32.15 24.66 20.69 31.80 23.71 19.64 31.35 22.92 18.80 10.28s/-
IRCNN 33.77 30.58 29.09 34.64 31.34 29.70 35.18 31.75 30.02 35.58 32.02 30.18 -/12.16s

ISTA-Net+ 32.50 30.78 29.22 34.84 31.72 29.85 35.37 32.04 30.10 35.87 32.25 30.22 -/0.03s
TFPnP 34.44 31.23 29.58 35.30 31.82 30.11 35.83 32.16 30.31 36.19 32.36 30.47 -/0.05s

DPUNet 34.39 31.44 29.74 35.41 32.11 30.32 35.98 32.43 30.59 36.34 32.62 30.70 -/0.04s

RecPF FCSA DMRI IRCNN ISTA-Net+ TFPnP DPUNet GroundTruth

30.73 30.31 31.97 32.84 30.87 33.50 33.69 PSNR

23.60 23.09 22.70 27.99 28.38 28.38 28.60 PSNR

19.51 16.80 19.10 28.46 28.60 28.78 29.39 PSNR

Figure 8: Reconstructed images and corresponding PSNRs (dB) for CS-MRI under various sampling ratios (η = 20%, 30%, 40%, from top to bottom) and different
noise levels (α = 10, 30, 50, from top to bottom) with seven algorithms.

Table 4: Average PSNR (dB) performance comparisons for CPR on twelve
images under different imaging conditions (η and α denote the sampling ratio
and noise level, respectively). The best results are labeled in bold and the
second-best results are underlined.

η α prGAMP prDeep DPUNet

50%
10 31.56 30.64 33.18
30 27.46 27.69 28.63

40%
10 31.26 30.10 32.34
30 26.77 27.46 28.37

30%
10 29.05 30.00 30.96
30 26.47 26.99 27.76

instance normalization via one fully connected layer; (9) PUNet
+ DConv2In2: PUNet with dynamic convolution and instance
normalization via two fully connected layers; (10) DPUNet:
PUNet with dynamic convolution via one fully connected layer
and dynamic instance normalization via two fully connected
layers. All models are trained and tested for image CS tasks

on the same experimental setting with noise-free 2.
To compare the performance, we show PSNRs (dB) of BCS

reconstructions (η = 10%, 25%, 40%) on Set11 with differ-
ent structures and the number of model parameters (Million),
provided in Table 5. It can be seen that the performance of
PUNet could be significantly improved by using dynamic con-
volution or dynamic instance normalization with two fully con-
nected layers, especially by using them together. Considered
by the complexity of the model, our final choice (i.e., DPUNet)
achieves performance near to the top with a reasonable number
of parameters.

4.3.2. Effects of different optimization frameworks
To provide the insight into the choice of optimization frame-

work, we compare the performance of the proposed three un-
rolling frameworks on image CS tasks, including their unrolled
networks and corresponding dynamic versions. In Table 6, it

2Notice that unless otherwise specified, the following experiments are con-
ducted on the fixed sampling matrix under noiseless case.
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prGAMP prDeep DPUNet

25.65 24.69 25.97

25.41 26.86 27.56

35.08 34.41 36.60

Figure 9: Reconstructed images and corresponding PSNRs (dB) for CPR under
different sampling ratios (η = 30%, 40%, 50%, from top to bottom) and noise
level (α = 10) with three algorithms.

Table 5: Comparisons of different structures in the proposed dynamic proximal
mapping module. We show PSNRs (dB) of BCS reconstructions under multiple
sampling ratios on Set11 with different architectures and the number of model
parameters (Million). The best results are labeled in bold and the second-best
results are underlined.

Architectures
Sampling Ratios

Params
10% 25% 40%

PUNet 26.57 31.80 34.85 1.12
PUNet + DConv1 26.87 32.47 35.50 2.24
PUNet + DConv2 27.05 32.73 36.05 72.65
PUNet + DIn1 26.87 32.39 35.70 1.13
PUNet + DIn2 27.15 32.74 36.12 1.46
PUNet + DIn3 27.25 32.85 36.23 1.79
PUNet + DConv1In1 26.49 32.04 34.84 2.25
PUNet + DConv2In1 26.76 32.51 35.92 72.66
PUNet + DConv2In2 27.33 32.99 36.42 72.98
DPUNet 27.31 32.99 36.48 2.58

can be seen that the proposed dynamic proximal mapping mod-
ule can consistently boost the performance of unrolling network
derived from PGD, HQS, and ADMM, with average perfor-
mance gain 1.45dB, 1.60dB, and 1.45dB, respectively. Mean-
while, DPUNet-PGD achieves the highest performance under
various sampling ratios compared against other networks, cho-
sen as the final choice.

Table 6: Comparisons of unrolling networks based on PGD, HQS, and ADMM.
We show PSNRs (dB) of image compressive sensing reconstructions under var-
ious sampling ratios on Set11.

Extensions Sampling Ratios
10% 25% 40% 50%

PUNet-PGD 26.57 31.80 34.85 36.12
DPUNet-PGD 27.31 32.99 36.48 38.35
PUNet-HQS 26.05 31.18 34.16 35.55
DPUNet-HQS 26.74 32.49 36.08 38.04
PUNet-ADMM 26.16 31.30 34.33 35.80
DPUNet-ADMM 26.80 32.51 36.05 38.02

4.3.3. Generalizability of DPUNet
To further investigate the generalizability of DPUNet, we

train and test DPUNet on consistent sampling ratios, denoted by
DPUNet-optimal. Figure 10 shows the comparison between the
”DPUNet-optimal”, ”DPUNet”, and ”PUNet” models for im-
age compressive sensing under multiple sampling ratios. Note
that ”DPUNet-optimal” denotes the (three) models of DPUNet
separately trained and tested on each sampling ratio, which is
expected to get the optimal results. ”DPUNet” and ”PUNet”
indicate the single model trained and tested on all sampling ra-
tios, and the main difference between them is that ”DPUNet”
adopts the proposed dynamic module which ”PUNet” lacks.

It can be observed that a single trained model of DPUNet
can achieve very close performance (the average PSNR differ-
ence is about 0.24 dB) with the optimal results, while there is
a large gap (the average PSNR difference is about 2.18 dB)
between ”PUNet” model and the optimal model. Overall, we
demonstrate that the proposed dynamic proximal mapping mod-
ule can significantly boost the generalizability of deep unrolling
networks, avoiding time-consuming and storage-consuming re-
training.

Figure 10: The model generalizability test of our method for image compres-
sive sensing under multiple sampling ratios. ”Ours-optimal” denotes the (three)
models trained and tested on consistent sampling ratios. ”Ours” is the single
model trained and tested on all sampling ratios. ”PUNet” is the degraded ver-
sion of ”Ours” without a dynamic module, and still the single model trained
and tested on all sampling ratios.
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Figure 11: The model robustness test of DPUNet with mismatched imaging
parameters on noisy BCS measurements. The real imaging conditions are sam-
pling ratio η = 30%, noise level α = 30. Here we test DPUNet under a range
of parameter values of the noise level as the input and show corresponding re-
construction results (PSNR) on Set11.

4.3.4. Robustness on imaging parameters mismatch
In practical applications, while the sampling ratio can be ac-

curately measured, the noise level or signal-to-noise ratio (SNR)
is often estimated by related methods [82, 83, 84] since the
ground truth is unknown. Thereby, DPUNet should be robust
to mismatched imaging parameters, mainly under noisy condi-
tions. To analyze the robustness of DPUNet for the mismatched
imaging parameters, we use a range of parameter values of the
noise-level as the input at the inference stage, and show av-
erage reconstruction results (PSNRs) on Set11 test set from
noisy BCS measurements (sampling ratio η = 30%, noise level
α = 30). Figure 11 illuminates that DPUNet is robust to the in-
accuracy of imaging parameters – reaching similar reconstruc-
tion results under a range of mismatched imaging parameters.
The visual comparisons can see Figure 12, which also shows
visually similar results of reconstructed images.

Table 7: Average PSNRs (dB) of reconstruction results with our single trained
model (Ours*) for different imaging modalities under varying imaging condi-
tions. The baselines are the models of DPUNet separately trained on a single
imaging task (BCS, CS-MRI, and CPR), which represent the performance stan-
dard.

Task η α Ours* Baselines

BCS
30%

10 29.97 30.04
30 25.57 25.70

50%
10 31.89 31.99
30 27.03 27.20

CS-MRI
30%

10 35.08 35.41
30 31.61 32.11

50%
10 36.00 36.34
30 32.07 32.62

CPR
30%

10 30.85 30.96
30 27.75 27.75

50%
10 33.11 33.14
30 28.55 28.63

α = 25 α = 28 α = 30*

24.81 25.11 25.11
α = 33 α = 35 GroundTruth

25.00 25.01 PSNR

Figure 12: Reconstructed images and corresponding PSNRs (dB) from noisy
BCS measurements (η = 30%, α = 30) under a range of parameter values of
the noise-level at the inference stage.

4.4. Extension for multiple compressive imaging tasks

Inspired by the same network structure for different com-
pressive imaging modalities, we explore the potential of our
method to handle multiple imaging tasks with one single trained
model. To verify this claim, we present an extension of our
method and run a mixed experiment, where we consider three
imaging modalities mentioned above under different sampling
ratios with varying noise levels. To implement this, we simulate
to generate the BCS measurements with the sampling ratio η
uniformly sampled from {1%, 4%, 10%, 25%, 40%, 50%} from
CS training data-set, CS-MRI measurements with the sampling
ratio η uniformly sampled from {20%, 30%, 40%, 50%} from
MRI training data-set, and the under-sampling coded diffrac-
tion measurements uniformly sampled from {30%, 40%, 50%}
from CPR training data-set, all adding noise with α uniformly
sampled from [0,50].

Moreover, we add an extra parameter κ to represent the
imaging modality 3, and the other parameters are related to the
imaging condition {η, α}. During training, the BCS, CS-MRI,
and CPR training data pairs that include image patches and cor-
responding measurements are alternately fed to our network, to-
gether with imaging parameters {κ, η, α}. The network is trained
in 200000 iterations using pixel-wise L2 loss and Adam opti-
mizer with learning rate 10−4. It takes about 18 hours to train
the model.

The reconstruction results with the extension of our method
for all imaging modalities and imaging conditions are provided
in Table 7. We can see that our method can not only handle
various imaging conditions but also totally different imaging
modalities via one single model without retraining. Here we

3For simplicity, we input the parameters κ = 1 for dealing with BCS task,
κ = 2 for CS-MRI, and κ = 3 for CPR.
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also compare with the results of our baselines, which represent
the models of DPUNet trained on a single imaging task (BCS,
CS-MRI, or CPR), respectively. These baseline models can be
regarded as the upper bound. It can be seen that the extension of
our method still achieves close results to the baselines, despite
small performance degradation. It means with the same net-
work structure, our method can handle different imaging tasks
via one single trained model without losing much accuracy. We
show reconstructed results of a single trained model for multi-
ple imaging modalities with noise level (α = 10) and different
sampling ratios (η = 10% for BCS, η = 20% for CS-MRI,
η = 50% for CPR) in Figure 1. It can be found that the pro-
posed network is flexible for various imaging conditions and
universal for different imaging modalities.

5. Conclusion

In this paper, we propose a dynamic proximal unrolling net-
work (DPUNet) for a variety of compressive imaging problems
under varying imaging conditions. The main contribution of the
proposed method is developing a dynamic proximal mapping
module, which can dynamically update parameters of the proxi-
mal network at the inference stage and make it adapt to different
imaging settings and even imaging modalities. As a result, the
proposed method can handle a wide range of compressive imag-
ing tasks, including image compressive sensing, CS-MRI, and
compressive phase retrieval under varying imaging conditions
via one single trained model. Moreover, an enhanced verision
DPUNet+ is developed for block-wise CS sampling, which in-
tegrates a dynamic deblocking module and reconstructs jointly
with DPUNet to further improve the performance. Experimen-
tal results demonstrate the effectiveness and competitive per-
formance of the proposed method. Thereby, we envision the
proposed method to be applied to embedded mobile devices
where storage and computational resources demands become
prohibitive, and to handle a variety of imaging tasks via only
one trained model.
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Appendix A. Formulas for the gradient in CPR

Proof. We start with

D(x) =
1
2
||
√

y − |Φx| ||22

=
1

2m

m∑
r=1

(
√

yr −

√
xT (ϕH

r ϕr)T x∗
)2

,
(A.1)

where yr is the r-th element of y, ϕr is the r-th row vector of Φ,
and x∗ denotes the conjugate of x.

Concerning Wirtinger derivatives of real valued functions
over complex variables [75], we establish

∂D(x)
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1
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r ϕr)T x∗
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(A.2)
This gives

∇D(x) =
(
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1
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)
,

(A.3)
where ◦ denotes the Hadamard (or elementwise) multiplication.
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